Recall:
We insert the ansatz $y=e^{r x}$ into the differential equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{1}
\end{equation*}
$$

and obtain the following constraint:

$$
a r^{2}+b r+c=0 \Rightarrow r_{1 / 2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

\rightarrow distinguish 3 cases:
1): $b^{2}-4 a c>0$
2): $\left.b^{2}-4 a c=0 \quad 3\right): b^{2}-4 a c<0$

Case 2: $b^{2}-4 a c=0$
In this case $r_{1}=r_{2} \rightarrow$ roots of the characteristic equation are real and equal.
Let's denote by r the common value of r and r_{2}. Then we have $r=-\frac{b}{2 a}$ so $2 a r+b=0$
We know that $y_{1}=e^{r x}$ is a solution of We now verify that $y_{2}=x e^{r x}$ is also a solution:

$$
\begin{aligned}
& a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2} \\
= & a\left(2 r e^{r x}+r^{2} x e^{r x}\right)+b\left(e^{r x}+r x e^{r x}\right)+c x e^{r x} \\
= & (2 a r+b) e^{r x}+\left(a r^{2}+b r+c\right) x e^{r x} \\
= & 0\left(e^{r x}\right)+0 \cdot\left(x e^{r x}\right)=0
\end{aligned}
$$

\rightarrow the most general solution is:

$$
\begin{equation*}
y=c_{1} e^{r x}+c_{2} x e^{r x} \tag{3}
\end{equation*}
$$

Case 3): $b^{2}-4 a c<0$
In this case the roots r_{1} and r_{2} are complex numbers. We can write

$$
r_{1}=\alpha+i \beta, \quad r_{2}=\alpha-i \beta
$$

where α and β are real numbers. (In fact, $\alpha=\frac{-b}{2 a}, \beta=\sqrt{4 a c-b^{2}} /(2 a)$.)
Then, using

$$
e^{i \theta}=\cos \theta+i \sin \theta_{1}
$$

we can write solutions of the differential equation as

$$
\begin{aligned}
y & =c_{1} e^{r_{1} x}+c_{2} e^{r_{2} x}=c_{1} e^{(\alpha+i \beta) x}+c_{2} e^{(\alpha-i \beta) x} \\
& =c_{1} e^{\alpha x}(\cos \beta x+i \sin \beta x)+c_{2} e^{\alpha x}(\cos \beta x-i \sin \beta x)
\end{aligned}
$$

$$
\begin{aligned}
& =e^{\alpha x}\left[\left(C_{1}+C_{2}\right) \cos \beta x+i\left(C_{1}-C_{2}\right) \sin \beta x\right] \\
& =e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
\end{aligned}
$$

where $c_{1}=C_{1}+C_{2}, \quad c_{2}=i\left(C_{1}-C_{2}\right)$.
\rightarrow If the roots of the auxiliary equation $a r^{2}+b r+c=0$ are complex numbers $r_{1}=\alpha+i \beta, \quad r_{2}=\alpha-i \beta$, then the general solution of

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

is

$$
y=e^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)
$$

Remark 9.4 (initial value problem): Similarly to the case of first order equations, an "initial value problem" for a second order equation consists of finding a solution y of the diff. eq. that also satisfies initial conditions of the form

$$
y\left(x_{0}\right)=y_{0}, \quad y^{\prime}\left(x_{0}\right)=y_{1}
$$

where Y_{0} and Y_{1} are given constants.

It can be shown that, under suitable conditions, there exists a unique solution to this initial value problem.
Example 9.8:
Solve the initial-value problem

$$
y^{\prime \prime}+y^{\prime}-6 y=0, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

Solution:
The characteristic equation is

$$
r^{2}+r-6=(r-2)(r-3)=0
$$

\rightarrow roots are given by $r=2,-3$.
Thus the general solution is given by

$$
y=c_{1} e^{2 x}+c_{2} e^{-3 x}
$$

This can be verified directly by substituting into the diff. eq.
Plugging in the initial conditions

$$
\begin{aligned}
& y(0)=c_{1}+c_{2}=1 \\
& y^{\prime}(0)=2 c_{1}-3 c_{2}=0
\end{aligned}
$$

we get

$$
c_{1}=\frac{3}{5}, \quad c_{2}=\frac{2}{5} .
$$

\rightarrow The required solution of the initial value problem is:

$$
y=\frac{3}{5} e^{2 x}+\frac{2}{5} e^{-3 x}
$$

Definition 9.8 (non-homogeneous equation): We would now want to tackle the non-homogeneous equation:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=G(x) \tag{4}
\end{equation*}
$$

where a, b, and c are constants and $G(x)$ is a continuous function. The related homogeneous equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{5}
\end{equation*}
$$

is called the "complementary equation" and plays an important role in the solution of the original non-homogeneous eq. (4).
Proposition 9.4:
The general solution of the non-homogeneous differential equation (4) can be written as

$$
y(x)=y_{p}(x)+y_{c}(x)
$$

where $Y / p(x)$ is a particular solution of equation (4) and y_{c} is the general solution of the complementary equation (5).
Proof:
We verify that if y is any solution of equation (4), then $y-y_{p}$ is a solution of the complementary equation (5) Indeed

$$
\begin{aligned}
& a\left(y-y_{p}\right)^{\prime \prime}+b\left(y-y_{p}\right)^{\prime}+c\left(y-y_{p}\right) \\
= & a y^{\prime \prime}-a y_{p}^{\prime \prime}+b y^{\prime}-b y_{p}^{\prime}+c y-c y_{p} \\
= & \left(a y^{\prime \prime}+b y^{\prime}+c y\right)-\left(a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}\right) \\
= & G(x)-G(x)=0
\end{aligned}
$$

\rightarrow every solution is of the form

$$
y(x)=y_{p}(x)+y_{c}(x) .
$$

Example 9.9:
Solve the equation $y^{\prime \prime}+y^{\prime}-2 y=x^{2}$.
\rightarrow the characteristic equation is

$$
r^{2}+r-2=(r-1)(r+2)=0
$$

with roots $r=1,-2$. So the solution of the complementary equation is

$$
y_{c}=c_{1} e^{x}+c_{2} e^{-2 x}
$$

Since $G(x)=x^{2}$ is a polynomial of degree 2, we seek a particular solution of the form

$$
y_{p}(x)=A x^{2}+B x+C
$$

\rightarrow "method of undetermined coefficients"
Then $y_{p}^{\prime}=2 A x+B$ and $Y_{p}^{\prime \prime}=2 A$, so substituting, we have

$$
\begin{gathered}
(2 A)+(2 A x+B)-2\left(A x^{2}+B x+C\right)=x^{2} \\
\text { or } \quad-2 A x^{2}+(2 A-2 B) x+(2 A+B-2 C)=x^{2}
\end{gathered}
$$

Thus

$$
-2 A=1, \quad 2 A-2 B=0, \quad 2 A+B-2 C=0
$$

\rightarrow solution:

$$
A=-\frac{1}{2}, \quad B=-\frac{1}{2}, \quad C=-\frac{3}{4} .
$$

$\rightarrow A$ particular solution: $y_{p}(x)=-\frac{1}{2} x^{2}-\frac{1}{2} x-\frac{3}{4}$
and, by Prop. 9.4, the general solution is $\quad y=y_{c}+y_{p}=c_{1} e^{x}+c_{2} e^{-2 x}-\frac{1}{2} x^{2}-\frac{1 x}{2}-\frac{3}{4}$

If $G(x)$ is of the form $C e^{k x}$, where C and k are constants, then we take as trial solution a function of the form

$$
y_{p}(x)=A e^{k x}
$$

Example 9.10:
Solve $y^{\prime \prime}+4 y=e^{3 x}$
\rightarrow The characteristic equation is

$$
r^{2}+4=0
$$

with roots $\pm 2 i$, so the solution of the complementary equation is

$$
y_{c}(x)=c_{1} \cos 2 x+c_{2} \sin 2 x
$$

For a particular solution we try $y_{p}(x)=A e^{3 x}$.
Then $y_{p}^{\prime}=3 A e^{3 x}$ and $y_{p}{ }^{\prime \prime}=9 A e^{3 x}$.
Substituting, gives

$$
9 A e^{3 x}+4\left(A e^{3 x}\right)=e^{3 x}
$$

so $13 A e^{3 x}=e^{3 x}$ and $A=\frac{1}{13}$.
Thus a particular solution is

$$
y_{p}(x)=\frac{1}{13} e^{3 x}
$$

and the general solution is

$$
y(x)=c_{1} \cos 2 x+c_{2} \sin 2 x+\frac{1}{13} e^{3 x}
$$

$\oint 9.5$ Systems of Differential Equations
So far, we have looked at differential equations of one unknown function.
More generally, we can have for example models of population growth with several species:

Example 9.11 (predators and preys):
i) In the absence of predators, we obtain the usual exponential growth of the prey:

$$
\frac{d R}{d t}=k R \text {, where } k>0
$$

and $R(t)$ is the number of prey.
ii) In the absence of prey, the predator population would decline:

$$
\frac{d W}{d t}=-r W \text {, where } \quad r>0
$$

and $W(t)$ is the predator population.
iii) With both species present, we expect:
(1) $\frac{d R}{d t}=k R-a R W, \frac{d W}{d t}=-r W+b R W$
where K, r, a and b are positive constants
Note: the two species encounter each other at a rate \sim RN
\rightarrow "predator-prey" equations
solutions:
There are "equilibrium" solutions when

$$
\begin{aligned}
\frac{d R}{d t}=\frac{d W}{d t}=0 & \Leftrightarrow k R-a R W=0 \quad \text { and } \\
& -r W+b R W=0 \\
& \Leftrightarrow R=\frac{b}{r}, W=\frac{k}{a}
\end{aligned}
$$

For other cases, we proceed as follows. We use the chain rule to eliminate t :

$$
\frac{d W}{d t}=\frac{d W}{d R} \frac{d R}{d t}
$$

so $\frac{d W}{d R}=\frac{d W / d t}{d R / d t}=\frac{-r W+b R W}{k R-a R W}$
\rightarrow obtained an equation of the form

$$
y^{\prime}=F(x, y)
$$

\rightarrow can analyse solutions using a direction field method:

We refer to the RW-plane as the "phase plane", and we call the solution curves "phase trajectories".
Equation (1) is an Example of a "system of diff. equations"

Definition 9.9:
i) A system of differential equations is of the form:

$$
\begin{gather*}
\frac{d x_{1}}{d t}=F_{1}\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right) \\
\frac{d x_{2}}{d t}=F_{2}\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right) \tag{2}\\
\vdots \\
\frac{d x_{n}}{d t}=F_{n}\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right)
\end{gather*}
$$

where $F_{1}, F_{2}, \ldots, F_{n}$ are single-valued functions continuous in a certain domain of their arguments, and $x_{1}, x_{2}, \ldots, x_{n}$ are unknown functions of the real variable t, satisfying (2) for some interval $t \in\left[t_{1}, t_{2}\right]$.
ii) A solution of (2) is a set of functions $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$, called the "components" of \vec{x}, and \vec{x} is designated by

$$
\vec{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

\rightarrow vector.

If \vec{x} is a function of a real variable t

$$
\vec{X}(t)=\left\{x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right\}
$$

it is "continuous" in t if and only if each of its components is continuous in t. If each of its components is differentiable, $\vec{X}(t)$ has the "derivative"

$$
\frac{d \vec{X}}{d t}(t)=\left\{\frac{d x_{1}(t)}{d t}, \frac{d x_{2}(t)}{d t}, \ldots, \frac{d x_{n}(t)}{d t}\right\}
$$

Thus (2) can be written as

$$
\begin{equation*}
\frac{d \vec{X}}{d t}=\vec{F}\left(\vec{x}_{1} t\right) \tag{3}
\end{equation*}
$$

where $\vec{F}\left(\vec{X}_{1} t\right)=\left\{F_{1}, F_{2}, \ldots, F_{n}\right\}$.

