$$\frac{\text{Recall}:}{\text{We insert the ansatz } \gamma = e^{rx} \text{ into the} \\ \text{differential equation} \\ a\gamma'' + b\gamma' + c\gamma = 0 \qquad (1) \\ \text{and obtain the following constraint:} \\ ar^2 + br + c = 0 \implies r_{v_2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ \xrightarrow{} \text{distinguish } 3 \text{ cases :} \\ \underline{1}: b^2 - 4ac > 0 \\ \underline{2}: b^2 - 4ac = 0 \quad \underline{3}: b^2 - 4ac < 0 \\ \end{array}$$

Case 2:
$$b^2 - 4ac = 0$$

In this case $r_1 = r_2 \rightarrow roots$ of the characteristic
equation are real and equal.
Yet's denote by r the common value of r, and
 r_2 . Then we have $r_2 - \frac{b}{2a}$ so $2ar+b=0$
(a)
We know that $\gamma_1 = e^{r_x}$ is a solution of (1)
We now verify that $\gamma_2 = xe^{r_x}$ is also a
solution:

$$a \chi_{2}^{"} + b \chi_{1}^{1} + c \chi_{2}$$

$$= a(2r e^{rx} + r^{2} x e^{rx}) + b(e^{rx} + rx e^{rx}) + cx e^{rx}$$

$$= (\lambda ar + b)e^{rx} + (ar^{2} + br + c)xe^{rx}$$

$$= 0(e^{rx}) + 0(xe^{rx}) = 0$$

$$\Rightarrow the most general solution is:$$

$$Y = c_{1}e^{rx} + c_{2}xe^{rx} \qquad (3)$$

$$Case 3): b^{2} - 4ac < 0$$

$$In this case the roots r, and r_{2} are complex numbers. We can write
$$r_{1} = \alpha + i/S, \quad r_{2} = \alpha - i/S$$
where α and $/S$ are real numbers.
$$(In fact, \alpha = -\frac{b}{2a}, \beta = \sqrt{4ac - b^{2}/(aa)})$$

$$Then, using$$

$$e^{i\theta} = cos\theta + isin\theta,$$
we can write solutions of the differential equation as
$$Y = C_{1}e^{r_{1}x} + C_{2}e^{r_{2}x} = C_{1}e^{(\alpha + i/S)x} + C_{2}e^{\kappa}(cos/x - isin/Sx)$$$$

$$= e^{k_{X}} \left[(C_{1} + C_{4}) \cos \beta x + i(C_{1} - C_{4}) \sin \beta x \right]$$

$$= e^{k_{X}} (C_{1} \cos \beta x + C_{4} \sin \beta x)$$
where $C_{1} = C_{1} + C_{2}$, $C_{4} = i(C_{1} - C_{4})$.
 \rightarrow If the roots of the auxiliary equation
 $ar^{2} + br + C = 0$ are complex numbers
 $r_{1} = \alpha + i\beta$, $r_{2} = \alpha - i\beta$, then the general
solution of
 $a\gamma'' + b\gamma' + C\gamma = 0$
is $\gamma = e^{\alpha x} (C_{1} \cos \beta x + C_{4} \sin \beta x)$
Remark 9.4 (initial value problem):
similarly to the case of first order
equations, an 'initial value problem' far
a second order equation consists of
finding a solution γ of the diff. eq.
that also satisfies initial conditions of the
form $\gamma(x_{0}) = \gamma_{0}$, $\gamma'(x_{0}) = \gamma_{1}$
where γ_{0} and γ_{1} are given constants.

It can be shown that, under suitable
conditions, there exists a unique solution
to this initial value problem.
Example 9.8:
Solve the initial-value problem

$$y'' + y' - 6y = 0$$
, $y(0) = 1$, $y'(0) = 0$
Solution:
The characteristic equation is
 $r^{2} + r - 6 = (r - 2)(r - 3) = 0$
 \rightarrow roots are given by $r = 2, -3$.
Thus the general solution is given by
 $y = c_{1}e^{2x} + c_{2}e^{-3x}$
This can be verified directly by substituting
into the diff. eq.
Plugging in the initial conditions
 $y(0) = c_{1} + c_{2} = 1$
 $y'(0) = 2c_{1} - 3c_{2} = 0$,
we get $c_{1} = \frac{3}{5}$, $c_{2} = \frac{2}{5}$.

Definition 9.8 (non-homogeneous equation): We would now want to tackle the non-homogeneous equation: $a\gamma'' + b\gamma' + c\gamma = G(x) \quad (4)$ where a, b, and c are constants and G(») is a continuous function. The velated homogeneous equation $a\gamma'' + b\gamma' + c\gamma = 0$ (5) is called the "complementary equation" and plays an important role in the solution of the original non-homogeneous eq. (4). Proposition 9.4: The general solution of the non-homogeneous differential equation (4) can be written as

$$\gamma(x) = \gamma_{p}(x) + \gamma_{c}(x)$$

where
$$\gamma_{p}(x)$$
 is a particular solution of
equation (4) and γ_{e} is the general
solution of the complementary equation (5).
Proof:
We verify that if γ is any solution of
equation (4), then $\gamma - \gamma_{p}$ is a
solution of the complementary equation (6)
Endeed
 $a(\gamma - \gamma_{p})'' + b(\gamma - \gamma_{p})' + c(\gamma - \gamma_{p})$
 $= a\gamma'' - a\gamma_{p}'' + b\gamma' - b\gamma_{p}' + c\gamma - c\gamma_{p}$
 $= (a\gamma'' + b\gamma' + c\gamma) - (a\gamma_{p}'' + b\gamma_{p}' + c\gamma_{p})$
 $= G(x) - G(x) = 0$
 \rightarrow every solution is of the form
 $\gamma(x) = \gamma_{p}(x) + \gamma_{c}(x)$.
 \Box
Example 9.9:
Solve the equation $\gamma'' + \gamma' - 2\gamma = x^{2}$.
 \rightarrow the characteristic equation is

 $r^{2} + r - 2 = (r - 1)(r + 2) = 0$ with roots 1=1, -2. So the solution of the complementary equation is $Y_c = c_1 e^{x} + c_2 e^{-2x}$ Since $G(x) = x^2$ is a polynomial of degree 2, we seek a particular solution of the form $\gamma_{p}(x) = Ax^{2} + Bx + C$ -> "method of undetermined coefficients" Then $\gamma p' = 2A \times + B$ and $\gamma p' = 2A$, so substituting, we have $(2A) + (2A \times + B) - 2(A \times^{2} + B \times + C) = x^{2}$ $ar - 2Ax^{1} + (2A - 2B)x + (2A + B - 2C) = x^{2}$ Thus $-\lambda A = 1,$ 2A - 2B = 0, 2A + B - 2C = 0-> solution ! $A = -\frac{1}{2}, \quad B = -\frac{1}{2}, \quad C = -\frac{3}{4}.$ -> A particular solution: Yp(x)=-1/2x2-1/x - 3

and, by Prop. 9.4, the general solution
is
$$Y = Y_{L} + Y_{p} = c_{1}e^{x} + c_{2}e^{-2x} - \frac{1}{2}x - \frac{1}{2x} - \frac{1}{2}q$$

If $G(x)$ is of the form Ce^{Kx} , where C
and K are constants, then we take
as trial solution a function of the form
 $Y_{p}(x) = Ae^{Kx}$.
Example 9.10:
Solve $Y'' + 4Y = e^{3x}$
 \rightarrow The characteristic equation is
 $r^{2} + 4 = 0$
with roots $\pm 2i$, so the solution of the
complementary equation is
 $Y_{c}(x) = C_{1} \cos 2x + c_{1} \sin 2x$
For a particular solution we try $Y_{k}W = Ae^{3x}$.
Then $Y_{p}^{1} = 3Ae^{3x}$ and $Y_{p}^{n} = 9Ae^{3x}$.
Substituting, gives
 $9A = e^{3x} + 4(Ae^{3x}) = e^{3x}$

so
$$13Ae^{3x} = e^{3x}$$
 and $A = \frac{1}{13}$.
Thus a particular solution is
 $\gamma_{p(x)} = \frac{1}{13}e^{3x}$
and the general solution is
 $\gamma'(x) = c_{1}\cos 2x + c_{2}\sin 2x + \frac{1}{13}e^{3x}$.
 $\frac{\$9.5}{13}$ Systems of Differential Equations
So far, we have looked at differential
equations of one unknown function.
More generally, we can have for example
models of population growth with several
species:
 $\frac{Example 9.11}{13}$ (predators and preys):
i) In the absence of predators, we obtain
the usual exponential growth of the prey:
 $\frac{dR}{2} = \frac{KR}{2}$ where $K > 0$

 $\frac{dK}{dt} = KR$, where K > 0and R(t) is the number of prey.

 $\frac{dW}{dt} = \frac{dW}{dR} \frac{dR}{dt}$ $\frac{dW}{dR} = \frac{dW/dt}{dR/dt} = \frac{-rW + bRW}{\kappa R - aRW}$ 50 -> obtained an equation of the form $\gamma' = F(x, \gamma)$ -> can analyse solutions using a direction field method: ≻₽ We refer to the RW-plane as the "phase plane", and we call the solution curves "phase trajectories". Equation (1) is an Example of a "system of diff. equations

If
$$\vec{X}$$
 is a function of a real variable t
 $\vec{X}(t) = \{x_1(t), x_2(t), \dots, x_n(t)\}$

it is "continuous" in t if and only if each of its components is continuous in t. If each of its components is differentiable, $\overline{X}(t)$ has the "derivative" $\frac{d\overline{X}(t)}{dt} = \left\{ \frac{dx_i(t)}{dt}, \frac{dx_i(t)}{dt}, \dots, \frac{dx_n(t)}{dt} \right\}$ Thus (2) can be written as

$$\frac{d\vec{x}}{dt} = \vec{F}(\vec{x},t), \quad (3)$$

where $\vec{F}(\vec{X},t) = \{F_1, F_2, \dots, F_n\}$